sábado, 3 de noviembre de 2012

POLINOMIO

POLINOMIO:

es una expresión constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una combinación lineal de productos de potencias enteras de una o de varias indeterminadas. Es frecuente el término polinomial, como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinomial, etc. Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química, economía y las ciencias sociales. En áreas de las matemáticas aplicadas, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en álgebra abstracta y geometría algebraica.

POTENCIACION Y RADICACION

POTENCIACION
La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe a^n y se lee usualmente como «a elevado a n» o «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente pueden pertenecer a conjuntos diferentes, en un anillo totalmente general la base será un elemento del anillo pero el exponente será un número natural que no tiene porqué pertenecer al anillo. En un cuerpo el exponente puede ser un número entero o cero.
RADICACION
En matemática, la radicación de orden n de un número a es cualquier número b tal que , donde n se llama índice u orden, a se denomina radicando, y b es una raíz enésima, por lo que se suele conocer también con ese nombre.

viernes, 2 de noviembre de 2012

PRODUCTOS NOTABLES


PRODUCTOS NOTABLES:

Productos notables es el nombre que reciben multiplicaciones con expresiones algebraicas cuyo resultado se puede escribir mediante simple inspección, sin verificar la multiplicación que cumplen ciertas reglas fijas. Su aplicación simplifica y sistematiza la resolución de muchas multiplicaciones habituales.
Cada producto notable corresponde a una fórmula de factorización. Por ejemplo, la factorización de una diferencia de cuadrados perfectos es un producto de dos binomios conjugados, y recíprocamente.

FRACCIONES ALGEBRAICAS:


FRACCIONES ALGEBRAICAS:

Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios.

Son fracciones algebraicas:
fraccion_algebraica_001

Las fracciones algebraicas tienen un comportamiento similar a las fracciones numéricas.

El valor de una fracción no se altera si se multiplican o dividen el numerador y denominador por una misma cantidad. Esta cantidad debe ser distinta de cero.

Por ejemplo:
Si fraccion_alegraica_003 se multiplica por x + 2 en su numerador y denominador resulta: 
fraccion_alebraica_004
Se recomienda hacer las operaciones con calma y mucha concentración ya que son frecuentes los errores de signos y los errores en el uso incorrecto de paréntesis.

RESOLUCION DE SISTEMAS DE ECUACIONES


RESOLUCIÓN DE SISTEMAS DE ECUACIONES

En las matemáticas, un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático consistente en encontrar los valores de las incógnitas que satisfacen dichas ecuaciones.
En un sistema de ecuaciones algebraicas las incógnitas son valores numéricos (o más generalmente elementos de un cuerpo sobre el que se plantean las ecuaciones), mientras que en una ecuación diferencial las incógnitas son funciones o distribuciones de un cierto conjunto definido de antemano. Una solución de dicho sistema es por tanto, un valor o una función que substituida en las ecuaciones del sistema hace que éstas se cumplan automáticamente sin que se llegue a una contradicción. En otras palabras el valor que reemplazamos en las incógnitas debe hacer cumplir la igualdad del sistema.
MÉTODOS:
MÉTODO DE ELIMINACIÓN-SUMA Y RESTA:


MÉTODO DE IGUALACIÓN:

MÉTODO DE SUSTITUCION

MÉTODO DE GAUSS
METODO DE GAUSS -JORDAN







REGLA DE CRAMER

OPERACIÓN DE NÚMEROS COMPLEJOS.


SIMPLIFICACIÓN Y OPERACIONES BÁSICAS CON NÚMEROS COMPLEJOS 

El término número complejo describe la suma de un número real y un número imaginario (que es un múltiplo real de la unidad imaginaria, que se indica con la letra i).
Los números complejos son la herramienta de trabajo del álgebra ordinaria, llamada álgebra de los números complejos, así como de ramas de las matemáticas puras y aplicadas como variable compleja, aerodinámica y electromagnetismo entre otras de gran importancia.
Contienen a los números reales y los imaginarios puros y constituyen una de las construcciones teóricas más importantes de la inteligencia humana. Los análogos del cálculo diferencial e integral con números complejos reciben el nombre de variable compleja o análisis complejo. 
SIMPLIFICACIÓN DE NÚMEROS COMPLEJOS

OPERACIONES BÁSICAS CON NÚMEROS COMPLEJOS:


NÚMEROS COMPLEJOS

REPRESENTACIÓN DE NÚMEROS                                                                                                         COMPLEJOS EN EL PLANO:



Los números complejos se representan en unos ejes cartesianos. El eje X se llama eje real y el Y, eje imaginario. El número complejo a + bi se representa:

1. Por el punto (a,b), que se llama su afijo,
gráfica
2. Mediante un vector de origen (0, 0) y extremo (a, b).
gráfica
Los afijos de los números reales se sitúan sobre el eje real, X. Y los imaginarios sobre el eje imaginario, Y.
gráfica

REPRESENTACIÓN GRÁFICA DE NÚMEROS COMPLEJOS.



Open Panel

Blogroll